Hybrid technique for shielding calculations on basis of CADIS

UDC: 
621.039.54

Issue of journal:

Abstract: 

Представлен гибридный метод расчета защиты на основе совместно го использования метода МонтеКарло с непрерывной зависимостью сечений от энергии и метода характеристик. Метод реализует схему автоматического уменьшения дисперсии CADIS (Consistent Adjoint Driven Importance Sampling) на основе решения многогрупповой сопряженной задачи методом характеристик по программе MCCG3D и генерации пространственно энергетических весовых окон на вспомгательной сетке для расчета по МонтеКарло. Представлена общая структура метода, включающая в себя результаты модельных расчетов, подтверждающие высокую эффективность гибридного метода. Обсуждены преимущества использования метода характеристик в схеме CADIS.

References: 
1. ORNL Shielding Integral Benchmark Archive and Database (SINBAD).
2. I.A. Kodeli, E. Sartori, A. Milocco, P. Ortego. 20 years of SINBAD, ICRS12 and RPSD2012 SCHEDULE.
3. Forschungszentrum Karlsruhe, U. Fischer (Ed.). Wissenschaftliche Berichte FZKA 5785 INDC(GER)41, Integral Data Tests of the FENDL1 Nuclear Data Library for Fusion Application, August 1996.
Simulation, M&C 2011, Rio de Janeiro, RJ, Brasil, May 8–12, 2011, on CDROM.
5. Zhang Q., AbdelKhalik H.S. Ajoint Based Global Variance Reduction Approach for Reactor Analysis Problems, M&C 2011, Rio de Janeiro, RJ, Brasil, May 8–12, 2011, on CDROM.
6. Suslov I.R. MCCG3D  3D Discrete Ordinates Transport Code for Unstructured Grid/ State of Art and Future Development / Сб. трудов семинара «Нейтроника96». C. 162. – Обнинск: ФЭИ, 1996.
7. Suslov I.R. A Consistent and Efficient FixUp for DD Scheme in XY Geometry based on Quasi Stationary Derivatives Principle, M&C’99 – Madrid, Mathematics and Computations, Reactor Physics and Environmental Analysis in Nuclear Applications p.84 (CD), Madrid, 27–30 September, 1999.
8. Suslov I.R. An Improved Transport Theory Schemes Based on the QuasiStationary Derivatives Principle, Proceedings of International Conference on Mathematical Methods and Supercomputing in Nuclear Applications, Saratoga Springs, USA, October 5–9, 1997.
9. Suslov I.R. An Algebraic Collapsing Acceleration in Long Characteristics Transport Theory. Proc. of the 11th Symposium of AER. p.179188. Csopak,Hungary,24–28 September 2001.
10. Suslov I.R. Metod harakteristik v slozhnoj geometrii dlja rascheta zashhity // VANT, serija FJaR, 1, 88, 1991.
11. Suslov I.R. Solution of Transport Equation in 2 and 3Dimensional Irregular Geometry by the Method of Characteristics, Proceedings of International Conference on Mathematical Methods and Supercomputing in Nuclear Applications, p. 752, Karlsruhe, Germany, April 19–23, 1993.
12. Suslov I.R., Pevey R.E., Bently C., Goluoglu S., DeMeglio R., Norton K., Dodds H.L. Efficiency of Method of Characteristics for Criticality Safety Calculations. Trans. Am. Nuc. Soc., 75, p.427, Orlando,USA,1–5 July 1997.
13. Progress in Nuclear Energy, v.39, p.223, 2001.
14. Goertzel G., Kalos M.H. MonteCarlo Methods in Transport Problems/ Progr. Nucl.Energy ser. I,Vol. 11, Physics and Mathematics, Pergamon Press, New York (1958).
15. Pederson S., Forster R.A., Booth T.E. Confidence Interval Procedure for MonteCarloTransport Simulations/ Nucl.Sci.Eng.,127,54–77(1997).
16. Briesmeister J.F. MCNP – A General Purpose MonteCarlo NParticle Transport Code, Version 4C/ LA13709M, December 2000.
17. Smith H.P., Wagner J.C. A case study in manual and automated Monte Carlo variance reduction with a deep penetration reactor shielding problem/ Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, Catlinburg, Tennessee, April 6– 11, 2003.
18. Van Riper K.A., Urbatsch T.J., Soran P.D., Parsons D.K., Morel J.E., McKinnely G.W., Lee S.R. etc. AVATAR  Automatic Variance Reduction in Monte Carlo Calculation/ Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, New York, October 5–9, 1997.
19. DOORS 3.2: One, Two and ThreeDimensional Discrete Ordinates Neutron/Photon Code System, Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC650.
20. Kobayashi K., Suugimura N., Nagaya Y. 3D Radiation Transport Benchmark Problems and Results for Simple Geometries with Void Regions/ Nuclear Energy Agency, November 2000.

For full access to information log in or register here.