About the Nature of the course of BN Reactor beyond Design Accidents under postaccident Core Materials Relocation

UDC: 
621.039.586:536.42

Issue of journal:

Author(s):

Abstract: 

In the safety analysis of BN reactor accepted division of beyond design accident into four stages: initial,
transitional, postaccident material relocation and postaccident heat removal. Formed in transitional
stage as a result of the molten cladding relocation and solidification initial steel blockages of channels for
a while impede the flow down of liquid fuel and form a solid foundation for the pool. To move the fuel in
channels it is required at first a melting of blockages. After reactor shutdown it is possible in the case of
insufficient heat to the surrounding fuel assemblies. Under meltthrough of blockage the melt will be flow
into the channels between the yet solid parts of the fuel rods at some length, it hardens there and again forms
a layer of blockages. As a result, the process of heatgenerating mass moving will be not smooth, and the
intermittent nature and will consist of repeating phases: meltthrough of blockages layer, leaking of melt at
some length and solidification, the melting of the next layer, etc.

References: 
1. Buksha Yu. On Approaches Applied Analysis of Meltdown Accident in BN800 Type Reactor / / Proc. IAEA/IWGFR Techn. Committee Meet. on MaterialCoolant Interactions and Material Movement and Relocation in LMFR’s, Oarai, Ibaraki, Japan, June 6–9, 1994. – Oarai Engineering Center, PNC, 1994. – P. 541–544.
2. Scenarij i posledstvija avarii LOFWS v reaktore BN800 JuzhnoUral'skoj AJeS / I.A. Kuznecov, V.M. Poplavskij, Ju.E. Shvecov i dr. – Doklad na seminare po bezopasnosti reakto rov na bystryh nejtronah. SNG – Evropejskoe soobshhestvo. Obninsk – Aktau, 24–29 fevralja 1992 g. – 24 s.
3. TMI2 Defuelling Conditions and Summary of Research Findings / G.R. Eidam, E.L. Tolman, J.M. Broughton et al. – Severe Accidents in Nuclear Power Plants: Proc. of an international Symposium held in Sorrento, 21–25 March 1988. – IAEA, Vienna, 1988. – Vol. 1. – P. 207–226.
4. Popov S.G. Analiz fizikohimicheskih processov, protekajushhih vo vremja avarij v aktivnoj zone reaktorov LWR // Atomnaja tehnika za rubezhom. – 1995. – № 2. – S. 7–16.
5. Le Rigoleur C., Hofmann F., Stansfield R. Review of European outofpile Tests and Analyses of Molten Material Movement and Relocation and of Molten Material – Sodium Interaction // Proc. IAEA/IWGFR Techn. Committee Meet. on MaterialCoolant Interactions and Material Movement and Relocation in LMFR’s, June 6–9, 1994, Oarai, Japan. – Oarai Engineering Center, 1994. – P. 17–43.
6. Main SCARABEE Lessons and Most Likely Issue of the Subassembly Blockage Accident / G. Kayser, G. Berthoud, K. Schleisiek et al. – Sodium Cooled Fast Reactor Safety: Proc. of an International Topical Meeting. – Obninsk, Russia, October 3–7, 1994. – Obninsk, 1994. – Vol. 2. – P. 2/146–2/155.
7. Jones G., Saroul J., Sesny R. The Different APL and BE+ Tests within the SCARABEE Programme: Means Used in Following and Evaluating the Evolution of the Tests – Application to a Test of Each Type // Science and Technology of FAST REACTOR SAFETY: Proc. of an international conference held in Guernsey on 12–16 May 1986. – BNES, London, 1987. – Vol. 2. – P. 389–394.
8. The SCARABEE Total Blockages Test Series: Synthesis of the Interpretation / J. Papin, J. Mac dougall, R. Sesny et al. – Proc. of 1990 Int. Fast Reactor Safety Meet., Snowbird, 12–16 August 1990. – ANS, 1990. – Vol. 1. – P.367–376.
9. Tattersall R.B., Maddison R.J., Miller K. Experiments at the UKAEA Winfrith on the Penetration of Molten Fuel into Pin Arrays and Tubes // Nuclear Energy. – 1989. – Vol. 28. – No. 4. – P.269–280.
10. Vlasichev G.N. Model' peremeshhenija i zatverdevanija rasplavlennogo topliva v kanalah pod aktivnoj zonoj pri tjazheloj avarii bystrogo reaktora // Izvestija vuzov. Jadernaja jenergetika. – 2000. – № 2. – S. 57–66.
11. Benuzzi A., Biasi L. Sensitivity of penetration lengths of molten aluminium in quartz–glass tubes. – In: Science and Technology of Fast Reactor Safety. Proc. of an Intern. Conf. Held in Guernsey on 12–16 May 1986. BNES, London, 1987, v. 2. P. 329–333.
12. Peppler W., Kaiser A., Will H. Freezing of a Thermite Melt Injected into an Annular Channel. Experiments and Recalculations // Exper. Thermal and Fluid Science. – 1988. – Vol. 1. – No. 4. – P. 335–346.
13. Vlasichev G.N. Chislennoe modelirovanie peremeshhenija i zatverdevanija rasplavlennogo topliva pri tjazheloj avarii bystrogo reaktora // Atomnaja jenergija. – 2001. – T. 90. – Vyp. 5. – S. 345–353.
14. Uolter A., Rejnol'ds A. Reaktoryrazmnozhiteli na bystryh nejtronah / Per. s angl. – M.: Jenergoatomizdat, 1986. – 624 s.
15. Barleon L., Thomauske K., Werle H. Cooling of Debris Beds // Nuclear Technology. – 1984. – Vol. 65. – No. 1. – P. 67–86.
16. Teplogidravlicheskij raschet TVS bystryh reaktorov s zhidkometallicheskim ohlazhdeniem / A.V. Zhukov, P.L. Kirillov, N.M. Matjuhin i dr. – M.: Jenergoatomizdat, 1985. – 160 s.
17. Best F.R., Wayne D., Erdman C. A Fuel Freezing Model for LiquidMetal Fast Breeder Reactor Hypothetical Core Disruptive Accidents // Nuclear Science and Engineering. – 1985. – Vol. 89. – P. 49–60.
18. Maschek W., Fieg G., Flad M. Experimental Investigations of Freezing Phenomena of Liquid/ Particle Mixtures in the THEFIS facility and their Theoretical Interpretation // Proc. of 1990 Int. Fast Reactor Safety Meet., Snowbird, 12–16 August 1990. – ANS, 1990. – Vol. 1. – P. 519– 529.

For full access to information log in or register here.